## ed Part of Wec

## GCE AS MARKING SCHEME

AUTUMN 2021

## AS <br> BIOLOGY - COMPONENT 1 B400U10-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2021 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

## EDUQAS GCE AS COMPONENT 1

## UNIT 1 - BASIC BIOCHEMISTRY AND CELL ORGANISATION <br> AUTUMN 2021 MARK SCHEME

## GENERAL INSTRUCTIONS

## Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark (apart from the questions where a level of response mark scheme is applied).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

## Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

## Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement. Award the middle mark in the level if most of the content statements are given and the communication statement is partially met. Award the lower mark if only the content statements are matched.

## Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

| cao | $=$ correct answer only |
| :--- | :--- | :--- |
| ecf | $=$ error carried forward |
| bod | $=$ benefit of doubt |


| Question |  |  | Marking details | Marks Available |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | A01 | AO2 | AO3 | Total | Maths | Prac |
| 1 | (a) | (i) |  | Unequal charges (1) Hydrogen +ive, Oxygen -ive (1) | 2 |  |  | 2 |  |  |
|  |  | (ii) | Can dissolve polar / charged molecules (1) Minerals/ Oxygen/ $\mathrm{CO}_{2}$ can dissolve in the water (1) | 2 |  |  | 2 |  |  |
| (b) |  | (i) | High heat specific capacity (1) <br> Large input of energy needed to raise temperature of water (1) | 1 | 1 |  | 2 |  |  |
|  |  | (ii) | Ice is less dense than water (1) <br> Ice forms an insulating layer on top of bodies of water (1) | 1 | 1 |  | 2 |  |  |
|  |  | (iii) | Hydrogen bonds (form between water molecules) (1) Stronger at surface / forms surface tension (1) | 1 | 1 |  | 2 |  |  |
|  |  | (iv) | Water is transparent/ light can penetrate for photosynthesis (1) Carbon dioxide/ minerals can be absorbed for photosynthesis (1) | 1 | 1 |  | 2 |  |  |
|  |  |  | Question 1 total | 8 | 4 | 0 | 12 | 0 | 0 |


| Question |  |  |  | Marking details | Marks available |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | A01 | AO2 | AO3 | Total | Maths | Prac |
|  | (a) | (i) |  |  | Ring drawn around one nucleotide | 1 |  |  | 1 |  |  |
|  |  | (ii) |  | $0.34 \mathrm{~nm}=3$ marks <br> If incorrect award 2 marks for: 3.4/10 If incorrect award 1 marks each for: Total length of DNA $=1 \times 10^{9} \mathrm{~nm}$ length of DNA / $2.94 \times 10^{8}$ |  | 3 |  | 3 | 3 |  |
|  | (b) | (i) |  | (Some) amino acids coded for by more than one mRNA codon | 1 |  |  | 1 |  |  |
|  |  | (ii) | 1 | DNA base sequence: TAC CAA ATA TGG CTA ATC |  | 1 |  | 1 |  |  |
|  |  |  | II | Amino acids: Met, Val, Tyr, Thr, Asp, Stop |  | 1 |  | 1 |  |  |
|  |  | (iii) |  | Any two ( $\times 1$ ) from: <br> Primary structure would be changed / incomplete / shorter polypeptide produced/ ref to stop codon (1) <br> This would affect the \{shape of the protein / tertiary structure / <br> folding\} (1) <br> Affects function e.g. change in shape of active site in enzyme (1) |  |  | 2 | 2 |  |  |
|  | (c) | (i) |  | $\begin{aligned} & \text { X: Ribosome (1) } \\ & \text { Y: Transfer RNA / tRNA (1) } \end{aligned}$ | 2 |  |  | 2 |  |  |




| Question |  |  |  | Marking details | Marks available |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | AO1 | AO2 | AO3 | Total | Maths | Prac |
| 4 | (a) | (i) |  | Microvilli + increase surface area (for diffusion of products of digestion) (1) |  | 1 |  | 1 |  |  |
|  |  | (ii) |  | Thin + so reduce length of diffusion path (for dissolved molecules in/out of capillary) (1) |  | 1 |  | 1 |  |  |
|  | (b) | (i) |  | Facilitated diffusion (1) | 1 |  |  | 1 |  |  |
|  |  | (ii) | 1 | Any four ( $\times 1$ ) from: <br> - $\mathrm{Na}^{+} / \mathrm{K}^{+}$pump transports $\mathrm{Na}^{+}$out of epithelial cell into bloodstream (1) <br> - By active transport (1) <br> - Reducing the concentration of $\mathrm{Na}^{+}$in (the cytoplasm of) the epithelial cell / maintaining $\mathrm{Na}^{+}$concentration gradient. (1) <br> - High $\mathrm{Na}^{+}$concentration in lumen from dietary sources (1) <br> - Cotransport of glucose with sodium ions from the lumen of small intestine (1) |  | 4 |  | 4 |  |  |
|  |  |  | II | Blood flow removes glucose that has been absorbed and lowers glucose concentration in the bloodstream (1) |  | 1 |  | 1 |  |  |
|  | (c) | (i) |  | Any three ( $\times 1$ ) from: <br> - Slows down the rate of glucose uptake (1) <br> - Phlorizin has a similar shape to glucose (1) <br> - Fits into the transport protein / is complementary to the transport protein (1) <br> - Preventing glucose from entering the transport protein / competes with glucose (1) |  | 1 | 2 | 3 |  |  |


|  | (ii) | Cancer cells divide continuously (1) So have a higher demand for glucose for respiration (1) |  | 1 | 1 | 2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Question 4 total | 1 | 9 | 3 | 13 | 0 | 0 |


| Question |  |  |  | Marking details | Marks available |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | A01 | AO2 | AO3 | Total | Maths | Prac |
| 5 | (a) | (i) |  |  | Addition of water (1) <br> Galactose and glucose correctly drawn (1) | 1 | 1 |  | 2 |  |  |
|  |  | (ii) |  | (1-4) Glycosidic bond | 1 |  |  | 1 |  |  |
|  |  | (iii) |  | Same chemical formula but different molecular structure (1) | 1 |  |  | 1 |  |  |
|  | (b) | (i) |  | Wash off any excess enzyme / calcium chloride (1) |  |  | 1 | 1 |  | 1 |
|  |  | (ii) |  | To ensure all bead sizes have the same concentration of lactase (1) |  |  | 1 | 1 |  | 1 |
|  |  | (iii) |  | Room temperature varies (1) <br> Carry out in thermostatically controlled waterbath (1) |  |  | 2 | 2 |  | 2 |
|  | (c) | (i) | 1 | $0.0042=3$ marks <br> If incorrect award 2 marks for 0.0041....... <br> If incorrect award 1 marks for <br> Volume of 1 bead $=4 / 3 \times 3.142 \times 0.1^{3}$ |  | 3 |  | 3 | 3 | 3 |
|  |  |  | II | ```Total number of beads \(=10 / 0.0042=2380=2\) marks If incorrect award 1 mark for 2380.95 2381``` |  | 2 |  | 2 | 2 | 2 |



| Question | Marking details | Marks available |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A01 | AO2 | AO3 | Total | Maths | Prac |
| 6 | - Meiosis <br> - Mass of DNA in nucleus has halved <br> - There are two stages of division <br> - A: DNA is replicated during interphase <br> - Mass of DNA doubles <br> - B: First meiotic division. <br> - Mass of DNA halved <br> - Homologues separate <br> - C: Second meiotic division <br> - DNA mass halves again <br> - Chromatids separate <br> - Daughter cells are haploid <br> - Genetic variation <br> - Crossing over during prophase I <br> - Random assortment (of homologues) during metaphase I <br> - Random assortment (of non-identical sister chromatids) in metaphase II <br> - Variation promotes species survival | 6 | 2 | 1 | 9 | 0 | 0 |



COMPONENT 1: BASIC BIOCHEMISTRY AND CELL ORGANISATION
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

| Question | AO1 | AO2 | AO3 | TOTAL MARK | MATHS | PRAC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8 | 4 | 0 | 12 | 0 | 0 |
| 2 | 9 | 5 | 2 | 16 | 3 | 0 |
| 3 | 0 | 7 | 2 | 9 | 0 | 0 |
| 4 | 1 | 9 | 3 | 13 | 0 | 0 |
| 5 | 3 | 6 | 7 | 16 | 5 | 12 |
| 6 | 6 | 2 | 1 | 9 | 0 | 0 |
| TOTAL | $\mathbf{2 7}$ | $\mathbf{3 3}$ | $\mathbf{1 5}$ | $\mathbf{7 5}$ | $\mathbf{8}$ | $\mathbf{1 2}$ |

